Tag Archives: step7

Массивы в Step 7

Массив объединяет группу данных одного типа (элементарного или составного), образуя одно целое. Вы можете создавать массив, состоящий из массивов. Определяя массив, Вы должны сделать следующее:

  • Присвоить массиву имя.
  • Описать массив с помощью ключевого слова ARRAY.
  • Определить размер массива, используя индекс. Вы определяете номер первого и последнего элемента по отдельным измерениям массива (максимум 6 измерений). Индекс вводят в квадратных скобках, разделяя измерения посредством запятой, а номера первого и последнего элемента измерения – двумя точками. Например, следующий индекс определяет, трехмерный массив: [1..5,–2..3,30..32]
  • Вы указываете тип данных, которые должны содержаться в массиве.

Пример 1

Следующий рисунок показывает массив с тремя целыми числами. Вы обращаетесь к данным, хранимым в массиве, используя индекс. Индекс – это номер в квадратных скобках. Например, вторым целым числом является Op_temp[2]».

Индекс может быть любым целым числом (от -32768 до 32767), включая отрицательные значения. Массив на следующем рисунке можно было бы определить также как ARRAY [-1 .. 1]. Тогда первым целым числом было бы Op_temp[-1], вторым целым числом – Op_temp[0] и третьим целым числом – Op_temp[1].

 

Пример 2

Массив может также описывать многомерную группу типов данных. Следующий рисунок показывает двумерный массив целых чисел.

 

Вы обращаетесь к данным в многомерном массиве, используя индекс. В этом примере первым целым числом является Op_temp[1,1]», третьим – Op_temp[1,3]», четвертым – Op_temp[2,1]» и шестым – Op_temp [2,3]».

Вы можете определять в массиве до 6 измерений (6 индексов). Например, Вы могли бы определить переменную Op_temp как шестимерный массив следующим образом:

ARRAY [1..3,1..2,1..3,1..4,1..3,1..4]

Индексом первого элемента в этом массиве является [1,1,1,1,1,1]. Индексом последнего элемента является [3,2,3,4,3,4].

Создание массивов

Вы определяете массивы, объявляя данные в DB или в разделе описания переменных. Когда Вы объявляете массив, Вы указываете ключевое слово (ARRAY), а затем размер в квадратных скобках следующим образом:

[значение нижней границы.. значение верхней границы]

В многомерном массиве Вы указываете также дополнительные верхние и нижние границы и разделяете отдельные измерения посредством запятой.

Следующий рисунок показывает описание для создания массива размерности 2 x 3.

 

Ввод начальных значений для массива

Создавая массивы, Вы можете каждому элементу массива присваивать начальное значение. STEP 7 предоставляет два метода ввода начальных значений:

  1. Ввод индивидуальных значений: для каждого элемента массива Вы указываете значение, допустимое для типа данных этого массива. Значения указываются в порядке следования элементов: [1,1]. Помните, что отдельные элементы должны отделяться друг от друга запятой.
  2. Задание коэффициента повторения: при наличии последовательных элементов, имеющих одинаковое начальное значение, Вы можете указать число таких элементов (коэффициент повторения) и начальное значение для этих элементов. Формат ввода коэффициента повторения имеет вид: x (y), где x – коэффициент повторения, а y – повторяемое значение.

Если Вы используете массив, описанный на рисунке, показанном выше, то Вы можете задать начальное значение для всех шести элементов следующим образом: 17, 23, -45, 556, 3342, 0. Вы могли бы также установить начальное значение всех шести элементов равным 10, указав 6(10). Вы могли бы задать определенные значения для первых двух элементов, а затем установить остальные 4 элемента в 0, указав следующее: 17, 23, 4(0).

Доступ к данным в массиве

Вы обращаетесь к данным в массиве через индекс определенного элемента в массиве. Индекс используется в сочетании с символьным именем.

Пример: Если массив, описанный на рисунке выше, начинается в первом байте DB20 (motor), Вы обращаетесь ко второму элементу этого массива по следующему адресу:

Motor.Heat_2x3[1,2].

Использование массивов в качестве параметров

Вы можете передавать массивы как параметры. Если параметр описан в разделе описания переменных как ARRAY, то Вы должны передать весь массив (а не отдельные элементы). Однако параметру может присваиваться элемент массива, когда Вы вызываете блок, если элемент массива соответствует типу данных параметра.

Если Вы используете массивы как параметры, то не требуется, чтобы эти массивы имели такое же имя (для них даже не нужно имени). Однако оба массива (и формальный параметр, и фактический параметр) должны иметь одинаковую структуру. Например, массив размерности 2 x 3, состоящий из целых чисел, может передаваться как параметр только тогда, когда формальный параметр блока определен как массив размерности 2 x 3, состоящий из целых чисел, и фактический параметр, предоставляемый операцией вызова, тоже является массивом размерности 2 x 3, состоящим из целых чисел.

Мой блог находят по следующим фразам

Редактирование команд FBD Step7

Установка формата для FBD

Вы можете установить формат для создания программ в виде функционального плана. Выбираемый вами формат (А4 книжная ориентация/альбомная ориентация/максимальный размер) оказывает влияние на количество элементов функционального плана, которые могут быть отображены в одной цепи.

1. Выберите команду меню Options > Customize [Параметры > Настройка].

2. В появившемся диалоговом окне выберите закладку «LAD/FBD (или LAD/FBD)».

3. Выберите требуемый формат из окна списка «Layout [Размещение]».

Введите требуемый размер формата.

Настройки для печати

Если Вы хотите распечатать раздел кодов функционального плана, Вы должны установить подходящий размер страницы, прежде чем Вы начнете программировать раздел кодов.

Настройки в таблице «LAD/FBD»

В таблице «LAD/FBD» куда Вы попадаете с помощью команды меню Options > Customize [Параметры > Настройка], Вы можете выполнять основные настройки, например, установить размер и ширину адресного поля.

Правила ввода элементов функционального плана

Сегмент функционального плана может состоять из ряда элементов. Все элементы должны быть соединены (IEC 1131–3).

При программировании в FBD Вы должны соблюдать ряд руководящих указаний. Сообщения об ошибках проинформируют Вас о любых сделанных вами ошибках.

Ввод и редактирование адресов и параметров

Когда вставляется элемент FBD, то в качестве маркеров для адресов и параметров используются символы ??? и … .

  • Красные символы ??? стоят вместо адресов и параметров, которые должны быть подключены.
  • Черные символы … стоят вместо адресов и параметров, которые могут быть подключены.

Если Вы поместите указатель мыши на маркерах, то отобразится ожидаемый тип данных.

Размещение блоков

Стандартные блоки (триггеры, счетчики, таймеры, математические операции и т. д.) могут быть добавлены к блокам с двоичными логическими операциями (&, >=1, XOR). Исключением из этого правила являются блоки сравнения.

В сегменте не могут быть запрограммированы отдельные логические операции с отдельными выходами. Вы можете, однако, назначить несколько присваиваний последовательности логических операций с помощью Т- образной ветви. На следующем рисунке показан сегмент с двумя присваиваниями.

  

На правом конце логической цепочки могут быть размещены только следующие блоки, замыкающие эту цепочку:

  • установка значения счетчика
  • назначение параметров и прямой счет, назначение параметров и обратный счет
  • назначение параметров и запуск импульсного таймера, назначение параметров и запуск таймера с удлиненным импульсом
  • назначение параметров и запуск таймера с задержкой включения/выключения.

Некоторые блоки требуют булевой логической операции, а некоторые блоки не должны иметь булевой логической операции.

Блоки, требующие булевой логики:

  • выход, установка выхода, сброс выхода _/[R]
  • промежуточный выход _/[#]_/, положительный фронт _/[P]_/,отрицательный фронт _/[N]_/
  • все блоки счетчиков и таймеров
  • переход по отрицанию _/[JMPN]
  • включение главного управляющего реле _/[MCR<]
  • сохранение VKE (RLO) в бите BR _/[SAVE]
  • возврат _/[RET]

Блоки, не допускающие булевой логики:

  • активизация главного управляющего реле [MCRA]
  • деактивизация главного управляющего реле [MCRD]
  • открытие блока данных [OPN]
  • выключение главного управляющего реле [MCR>]

Все остальные блоки могут как иметь булевы логические операции, так и не иметь их.

Деблокирующий вход/Деблокирующий выход

Деблокирующий вход «EN» и деблокирующий выход «ENO» блоков может быть подключен, но это не обязательно.

Удаление и замена

При удалении блока удаляются также все ветви, подключенные к булевым входам блока, за исключением главной ветви. Режим замены может использоваться для простой замены элементов одного и того же типа.

Константы

Двойные линии не могут назначаться константам (например, TRUE или FALSE). Вместо этого, используйте адреса типа данных BOOL.

Мой блог находят по следующим фразам

Правила ввода элементов в LAD Step7

Сегмент контактного плана может состоять из ряда элементов, расположенных в нескольких ветвях. Все элементы и ветви должны быть соединены; левая шина не считается соединением(IEC 1131–3).

При программировании в контактном плане Вы должны соблюдать ряд руководящих указаний. Сообщения об ошибках проинформируют Вас о любых сделанных вами ошибках.

Закрытие сегмента LAD

Каждый сегмент контактного плана должен быть закрыт с помощью катушки или блока. Для закрытия сегмента не должны использоваться следующие элементы контактного плана:

  • блоки сравнения
  • катушки для промежуточных выводов _/(#)_/
  • катушки для анализа положительного _/(P)_/ или отрицательного _/(N)_/фронта.

 Размещение блоков

Начальной точкой ветви для подключения блока всегда должна быть левая шина. В ветви перед блоком могут находиться логические операции или другие блоки.

Размещение катушек (coils)

Катушки размещаются автоматически на правом конце сегмента, образуя конец ветви.

Исключения: Катушки для промежуточных выводов _/(#)_/ и для анализа положительного _/(P)_/ или отрицательного _/(N)_/ фронта не могут размещаться ни на левом, ни на правом краю ветви. Не разрешаются они и в параллельных ветвях.

Некоторые катушки требуют булевой логической операции, а некоторые катушки не должны иметь булевой логической операции.

Катушки, требующие булевой логики.

  • выход _/( ), установка выхода _/(S), сброс выхода _/(R)
  • промежуточный выход _/(#)_/, положительный фронт _/(P)_/, отрицательный фронт _/(N)_/
  • все счетчики и таймеры
  • переход по отрицанию _/(JMPN)
  • включение главного управляющего реле _/(MCR<)
  • сохранение VKE (RLO) в бите BR _/(SAVE)
  • возврат _/(RET)

Катушки, не допускающие булевой логики:

  • активизация главного управляющего реле _/(MCRA)
  • деактивизация главного управляющего реле _/(MCRD)
  • открытие блока данных _/(OPN)
  • выключение главного управляющего реле _/(MCR>)

Все остальные катушки могут как иметь булеву логику, так и не иметь ее.

Следующие катушки не должны использоваться как параллельные выходы:

  • переход по отрицанию _/(JMPN)
  • переход _/(JMP)
  • вызов из катушки _/(CALL)
  • возврат _/(RET)

Деблокирующий вход/Деблокирующий выход

Деблокирующий вход «EN» и деблокирующий выход «ENO» блоков может быть подключен, но это не обязательно.

Удаление и замена

Если ветвь состоит только из одного элемента, то при удалении этого элемента удаляется и вся ветвь. При удалении блока удаляются также все ветви, подключенные к булевым входам блока, за исключением главной ветви.

Режим замены может использоваться для простой замены элементов одного и того же типа.

Параллельные ветви

  • Чертите параллельные ветви слева направо.
  • Параллельные ветви открываются вниз и закрываются вверх.
  • Параллельная ветвь всегда открывается после выделенного элемента контактного плана.
  • Параллельная ветвь всегда закрывается после выделенного элемента контактного плана.
  • Для удаления параллельной ветви удалите все элементы в этой ветви.
  • Когда в ветви удаляется последний элемент, ветвь удаляется автоматически.

Константы

Двойные линии не могут назначаться константам (например. TRUE или FALSE). Вместо этого, используйте адреса типа данных BOOL.

Недопустимые логические операции в контактном плане

Поток энергии справа налево

Нельзя создавать ветви, которые могут вызвать поток энергии в противоположном направлении. Пример показан на следующем рисунке: при нулевом состоянии сигнала на I 1.4 поток энергии через I 6.8 был бы направлен справа налево, что недопустимо.

 

Короткое замыкание

Не могут создаваться ветви, вызывающие короткое замыкание. Пример показан на следующем рисунке:

 

Мой блог находят по следующим фразам

Языки программирования Step7

Язык программирования Ladder Logic (LAD)

Графический язык программирования Ladder Logic (LAD) основан на представлении коммутационных схем. Элементы коммутационной схемы, такие как нормально открытые контакты и нормально замкнутые контакты, группируются в сегменты. Один или несколько сегментов образуют раздел кодов логического блока.

Создание программ в нем выполняется в редакторе пошагового ввода.

 пример сегментов в LAD

 Язык программирования. Функциональный план (FBD)

Язык программирования Функциональный план (FBD) использует для представления логики графические логические символы, известные из булевой алгебры. Сложные функции, такие как математические, также могут быть представлены непосредственно в соединении с логическими блоками.

Пример сегмента в FBD

 Язык программирования. Список команд (STL)

Представление языка программирования Список команд (STL) – это текстовый язык, подобный машинному коду. Каждая команда соответствует шагу работы CPU при обработке программы. Несколько команд могут быть связаны друг с другом, образуя сегменты.

Пример сегментов в Списке команд

 Язык программирования Список команд включен в стандартный пакет программного обеспечения STEP 7. Вы можете редактировать блоки S7 в этом представлении языка с помощью редакторов пошагового ввода или создавать свою программу с помощью редактора, работающего в режиме свободного редактирования в исходном файле на STL, а затем компилировать ее в блоки.

 Язык программирования S7 SCL

Язык программирования SCL (Structured Control Language [Структурированный язык управления]), доступный как дополнительный пакет, − это текстовый язык высокого уровня, определение которого в целом соответствует стандарту Международной электротехнической комиссии IEC 1131-3. Этот паскалеобразный язык благодаря своим командам высокого уровня упрощает в сравнении с STL программирование циклов и условных переходов. Поэтому SCL пригоден для расчетов, включая формулы, сложные оптимизационные алгоритмы или управление большими объемами данных.

 Создание программ на S7 SCL производится в режиме свободного редактирования в исходном файле.

Пример:

FUNCTION_BLOCK FB20

VAR_INPUT

ENDVAL: INT;

END_VAR

VAR_IN_OUT

IQ1 : REAL;

END_VAR

VAR

INDEX: INT;

END_VAR

BEGIN

CONTROL:=FALSE;

FOR INDEX:= 1 TO ENDVALUE DO

IQ1:= IQ1 * 2;

IF IQ1 >10000 THEN

CONTROL = TRUE

END_IF

END_FOR;

END_FUNCTION_BLOCK

Язык программирования S7 Graph (последовательное управление)

Графический язык программирования S7 Graph, доступный в виде дополнительного пакета, дает возможность программирования устройств последовательного управления. Это включает в себя создание последовательности шагов, определение содержания каждого шага и определение переходов. Вы программируете содержание шагов на специальном языке программирования (похожем на список команд) и вводите переходы в редакторе цепных логических схем (модернизированная версия языка КОР).

S7 Graph очень ясно представляет сложные последовательности и делает программирование и поиск неисправностей более эффективными.

Пример последовательного управления в S7 Graph

 Создаваемые блоки

С помощью редактора S7 Graph программируется функциональный блок, который содержит генератор последовательности шагов. Соответствующий экземплярный блок данных содержит данные для этого генератора, например, параметры FB, условия для шагов и переходов. Вы можете обеспечить автоматическое создание этого экземплярного блока данных в редакторе S7 Graph.

Исходный файл

Из функционального блока, созданного в S7 Graph, может быть сгенерирован текстовый исходный файл, который может интерпретироваться панелями оператора или текстовыми дисплеями интерфейса с оператором для отображения генератора последовательности шагов.

Язык программирования S7 HiGraph (граф состояний)

Графический язык программирования S7 HiGraph, доступный в качестве дополнительного пакета, позволяет программировать ряд блоков в вашей программе как графы состояний. Это разделяет вашу установку на отдельные функциональные агрегаты, каждый из которых может принимать различные состояния. Для изменения состояний определяются переходы. Вы описываете действия, поставленные в соответствие состояниям, и условия для переходов между состояниями на языке, похожем на список команд.

Вы создаете граф для каждого функционального агрегата, который описывает поведение этого агрегата. Графы для установки объединяются в группы графов. Для синхронизации функциональных агрегатов между графами может производиться обмен сообщениями. Ясное представление переходов между состояниями функционального агрегата делает возможным систематическое программирование и облегчает поиск ошибок. В отличие от S7 Graph, в S7 HiGraph в каждый момент времени активно только одно состояние (в S7 Graph: «шаг»). На следующем рисунке показано, как создавать графы для функциональных агрегатов (пример).

 

 Группа графов хранится в исходном файле HiGraph в папке «Source Files [Исходные файлы]» под программой S7. Затем исходный файл компилируется в блоки S7 для программы пользователя.

Синтаксис и формальные параметры проверяются на последнем элементе графа (при закрытии рабочего окна). Адреса и символы проверяются при компиляции исходного файла.

Язык программирования S7 CFC

Дополнительный пакет программного обеспечения CFC (Continuous Function Chart [Схема непрерывных функций]) – это язык программирования, используемый для графического связывания сложных функций.

Язык программирования S7 CFC используется для связывания существующих функций. Вам нет необходимости программировать самим многие стандартные функции, вместо этого Вы можете использовать библиотеки, содержащие стандартные блоки (например, для логических, математических функций, функций управления и обработки данных). Для использования CFC Вам не нужны детальные знания в области программирования или специальные знания о программном управлении, и Вы можете сосредоточиться на технологии, используемой в вашей отрасли промышленности.

Созданная программа хранится в виде схем CFC. Они находятся в папке «Charts [Схемы]» под программой S7. Эти схемы затем компилируются для формирования блоков S7 для программы пользователя. Возможно, Вы сами захотите создать подлежащие соединению блоки, в этом случае Вы программируете их для SIMATIC S7 с помощью одного из языков программирования S7, а для SIMATIC М7 – с помощью С/С++.

Мой блог находят по следующим фразам

Структура проекта S-200

Проект создает пять собственных компонентов:

Рис. 1 Компоненты проекта S7-200

Загрузка компонентов проекта в CPU и выгрузка из CPU

Для загрузки проекта в CPU S7–200 нужно:

  • Выбрать команду меню File >Download.
  • Щелкнуть на элементе проекта, который необходимо загрузить.
  • Щелкнуть на кнопке Download

Установка режима работы CPU S7–200

S7–200 имеет два режима работы: STOP и RUN. В состоянии STOP S7–200 не выполняет программы, и можно загрузить в CPU программу или конфигурацию CPU. В режиме RUN S7–200 исполняет программу. Для изменения режима работы S7–200 снабжен переключателем режимов. С помощью переключателя режимов можно установить режим работы вручную:

  • установка переключателя режимов в STOP прекращает исполнение программы;
  • установка переключателя режимов в RUN запускает исполнение программы;
  • установка переключателя режимов в режим TERM (терминал) не изменяет режима работы.

Если питание прерывается, когда переключатель режимов находится в положении STOP или TERM, S7–200 при восстановлении питания автоматически переходит в состояние STOP. Если питание прерывается, когда переключатель режимов находится в положении RUN, S7–200 при восстановлении питания переходит в режим RUN.

STEP 7-Micro/WIN в режиме online дает возможность изменить режим работы S7–200. Чтобы это программное обеспечение могло управлять режимом работы, нужно вручную перевести переключатель режимов работы на S7– 200 в положение TERM или RUN. Для изменения режима работы можно использовать команды меню PLC > STOP или PLC > RUN или соответствующие кнопки на панели инструментов.

Для перевода S7–200 в состояние STOP можно использовать в программе команду STOP. Это позволяет прекратить исполнение программы в зависимости от логики обработки.

Программный блок Программный блок содержит исполняемый код и комментарии. Исполняемый код состоит из основной программы (OB1) и некоторых подпрограмм или программ прерываний. Код компилируется и загружается в PLC. Комментарии не компилируются и не загружаются.

Блок данных DB. Блок данных содержит данные (начальные значения переменных, значения констант) и комментарии. Данные компилируются и загружаются в PLC. Комментарии не компилируются и не загружаются.

Системный блок System Block. Системный блок содержит данные конфигурации, такие как параметры коммуникации, области сохраняемых данных, аналоговые и цифровые входные фильтры, значения выходов в случае перехода в STOP (и информацию о пароле). Системный блок загружается в PLC.

Таблица символов «Symbol Name». Таблица символов позволяет Вам использовать символическую адресацию. Символика часто делает программирование более простым и облегчают чтение программ. Скомпилированная программа, которая загружается в PLC преобразует все символы в абсолютные адреса. Информация таблицы символов не загружается в PLC.

Диаграмма состояний Status Chart. Информация диаграммы состояний не загружается в PLC. На диаграмме состояния можно ввести адреса программы для мониторинга и модификации. Величины таймеров или счетчиков могут быть отображены, как биты или слова. Если выбирается битовый формат, то отображается состояние выхода (ON или OFF). Если выбирается формат слова, то отображается текущая величина таймера или счетчика.

Использование таблицы символов для символической адресации переменных

Таблица символов используется для присвоения символических имён входам, выходам и адресам.

Символическое имя:

  • Максимум 23 символа
  • Большая, маленькая буква имеет смысл
  • Пробел заменяется знаком подчёркивания.
  • Повторяющиеся символьные имена подчёркиваются, не компилируются и не могут быть использованы в программе.

Таблица символов дает возможность определять и редактировать символы, к которым можно обращаться во всей программе через символические имена. Таблица символов называется также таблицей глобальных переменных.

Можно указывать операнды команд в программе абсолютно или символически. При абсолютной адресации задается область памяти, а также бит или байт адреса. При символической адресации для указания адреса используются комбинации алфавитно- цифровых символов.

Для присвоения адресу символического имени необходимо:

1. Щелкнуть в навигационной панели на кнопке таблицы символов, чтобы вызвать таблицу.

2. Ввести символическое имя (например, Pump1Limit) в столбце «Symbol Name». Максимальная длина символического имени составляет 23 символа.

3. В столбце Address ввести адрес (например, I1.1).

Рис. 2 Таблица символов

Открыть таблицу символов можно с помощью щелчка правой кнопкой «мыши» на символе модуля. После этого во всплывающем окне выбирается пункт Edit Symbolic Names (Редактирование символьных имен). После этого открывается таблица символов с соответствующими адресами. Для программы создается только одна таблица символов, независимо от того, какой язык программирования выбран. Нельзя использовать одну и ту же строку более одного раза в качестве глобального символического имени ни в единственной таблице, ни в нескольких различных таблицах!

Использование таблицы состояний (Status Chart)

С помощью таблицы состояний (Status Chart) можно наблюдать и изменять переменные процесса, когда S7– 200 исполняет программу управления. Можно отслеживать состояние входов, выходов или переменных программы, отображая их текущие значения. В таблице состояний можно также принудительно задавать или изменять значения переменных процесса.

Для вызова таблицы состояний необходимо выбрать команду меню View > Component > Status Chart или щелкнуть на пиктограмме таблицы состояний на навигационной панели.

Рис. 3 Таблица состояний

Для создания таблицы состояний и контроля переменных:

1. Введите в поле адресов адреса желаемых величин.

2. В столбце Format выберите тип данных.

3. Для отображения состояния переменных процесса в своем S7–200 выберите команду меню Debug > Chart Status.

4. Если вы хотите опрашивать эти величины непрерывно или хотите однократно считать состояние, щелкните на соответствующем символе на панели инструментов.

В таблице состояний можно также принудительно устанавливать или изменять значения различных переменных процесса.В таблицу состояний можно вставлять дополнительные строки, выбрав команду меню Edit > Insert >Row.

Невозможно отобразить состояния констант, аккумуляторов и локальных переменных. Значения таймеров и счетчиков можно отображать в виде бита или слова. Если значение отображается в виде бита, то оно представляет состояние бита таймера или счетчика; если значение отображается в виде слова, то оно является значением таймера или счетчика.

 

Мой блог находят по следующим фразам