Tag Archives: Siemens

Глоссарий Siemens PLC

Адрес — это обозначение для определенного операнда или области операндов, примеры: вход I 12.1; слово памяти (меркерное слово) MW 25; блок данных DB 3.

Аккумуляторы — это регистры в —> CPU, которые служат в качестве промежуточной памяти для операций загрузки, передачи, а также сравнения, преобразования и арифметических операций.

Аналоговые модули преобразуют аналоговые параметры процесса (напр., температуру) в цифровые величины, которые могут далее обрабатываться процессором, или преобразуют цифровые величины в аналоговые управляющие воздействия.

Аппаратное прерывание запускается запускающими прерывания модулями при возникновении в управляемом процессе определенного события. Аппаратное прерывание передается на CPU. В зависимости от приоритета этого прерывания запускается соответствующий —> организационный блок.

Биты памяти (меркеры) . это составная часть —> системной памяти CPU для хранения промежуточных результатов. К ним можно обращаться побитно, побайтно, словами или двойными словами.

Блоки данных (DB) — это области данных в программе пользователя, содержащие данные пользователя. Имеются глобальные блоки данных, к которым можно обращаться из всех кодовых блоков, и экземплярные блоки данных, которые поставлены в соответствие определенному вызову FB.

Блок питания сигнальных и функциональных модулей и подключенной к ним

процессной периферии.

Буферная батарея обеспечивает, что —> программа пользователя сохраняется в —> CPU при исчезновении напряжения питания, и определенные области данных и биты памяти, таймеры и счетчики остаются реманентными. У CPU, не требующих обслуживания (напр., CPU 31xC), для сохраняемости данных батарея не требуется.

Буферная память обеспечивает буферизацию областей памяти в CPU без буферной батареи. Буферизуется параметрируемое количество таймеров, счетчиков, битов памяти (меркеров) и байтов данных, реманентные таймеры, счетчики, меркеры и байты данных.

Варистор — Резистор, сопротивление которого зависит от напряжения

Версия продукта — Продукты с одинаковым заказным номером могут отличаться версией. Версия продукта повышается при совместимых вверх расширениях функциональных возможностей, при изменениях, обусловленных производством (использование новых узлов/компонентов), а также при устранении ошибок.

Время цикла . это время, необходимое  CPU для однократной обработки  программы пользователя.

Выравнивание потенциалов- Электрическое соединение (провод для выравнивания потенциалов), которое делает одинаковыми или приблизительно одинаковыми потенциалы корпусов электрооборудования и других проводящих корпусов, чтобы воспрепятствовать появлению паразитных или опасных напряжений между этими корпусами.

Глобальные данные . это данные, к которым можно обратиться из любого кодового блока (FC, FB, OB). В частности, это биты памяти М, входы I, выходы Q, таймеры, счетчики и блоки данных DB. К глобальным данным можно обращаться абсолютно или символически.

Глубина вложения — С помощью вызова блоков один блок может вызываться из другого. Под глубиной вложения понимают количество одновременно вызванных  кодовых блоков.

Временные данные — это локальные данные блока, которые во время обработки блока накапливаются в L.стеке и после обработки становятся недоступными.

Статические данные . это данные, используемые только внутри функционального блока. Эти данные хранятся в экземплярном блоке данных, принадлежащем функциональному блоку. Данные, находящиеся в экземплярном блоке данных, сохраняются до следующего вызова функционального блока.

Диагностический буфер — это буферизованная область памяти CPU, в которой накапливаются диагностические события в последовательности их появления.

Диагностическое прерывание — Модули, способные к диагностике, через диагностические прерывания сообщают  CPU распознанные системные ошибки.

Загрузочная память . это составная часть центрального модуля. Она содержит объекты, созданные устройством программирования. Она реализуется или как вставная плата памяти, или как жестко встроенная память.

Задняя шина . это расположенная на задней стенке модулей последовательная шина данных, через которую модули осуществляют связь друг с другом и получают необходимое питание. Связь между модулями создается с помощью шинных соединителей.

Заземлить — значит соединить электропроводную часть установки через заземляющее устройство с заземлителем (одним или несколькими электропроводными элементами, имеющими очень хороший контакт с грунтом).

Заменяющие значения . это параметрируемые величины, которые выдаются модулями вывода на процесс, когда CPU находится в состоянии STOP. При ошибках доступа к периферии у модулей ввода заменяющие значения могут быть записаны в аккумулятор вместо нечитаемых входных величин (SFC 44).

Земля — Токопроводящий грунт, электрический потенциал которого в любой точке может быть установлен на нуль. В районе заземлителей грунт может иметь потенциал, отличный от нуля. В связи с этим обстоятельством часто применяется термин .опорная земля..

Индикация ошибок . это одна из возможных реакций операционной системы на ошибку исполнения программы. Другие возможные реакции: реакция на ошибку в программе пользователя, состояние STOP CPU.

Классы приоритета — Операционная система CPU S7 предоставляет максимум 26 классов приоритета (или «уровней обработки программы»), которым поставлены в соответствие различные организационные блоки. Классы приоритета определяют, какие OB прерывают другие OB. Если класс приоритета включает в себя несколько OB, то они не прерывают друг друга, а обрабатываются последовательно.

Кодовый блок . это блок в SIMATIC S7, который содержит часть программы пользователя STEP 7. (В противоположность —> блоку данных, который содержит только данные.)

Коммуникационные процессоры . это модули для двухточечных соединений и соединений с помощью шины.

Конфигурирование — Назначение модулей носителям модулей/слотам и (напр., в случае

сигнальных модулей) адресам.

Коэффициент редукции определяет по отношению к циклу CPU, как часто посылаются и принимаются GD-пакеты.

Маркер — Право доступа к шине

Массой считается совокупность связанных друг с другом неактивных частей оборудования, которые и в случае аварии не могут оказаться под опасным для прикосновения напряжением.

Новый пуск — При запуске центрального процессора (например, при переводе переключателя режимов работы из положения STOP в RUN или при включении сетевого напряжения) перед циклической обработкой программы (ОВ 1) сначала обрабатывается организационный блок ОВ 100 (новый пуск). При новом пуске считывается образ процесса на входах и программа пользователя STEP 7 обрабатывается, начиная с первой команды ОВ 1.

Обработка ошибок через OB — Если операционная система распознает определенную ошибку (напр., ошибку доступа в STEP 7), то она вызывает предусмотренный для этого случая организационный блок (ОВ ошибок), в котором может быть определено дальнейшее поведение CPU.

Образ процесса . это составная часть —> системной памяти CPU. В начале циклической программы сигнальные состояния модулей ввода передаются образу процесса на входах. В конце циклической программы образ процесса на выходах передается модулям вывода в качестве сигнального состояния.

Операционная система CPU организует все функции и процессы CPU, не связанные со специальной задачей управления.

Опорный потенциал — Потенциал, относительно которого рассматриваются и/или измеряются потенциалы цепей тока.

Организационные блоки (ОВ) образуют интерфейс между операционной системой CPU и программой пользователя. В организационных блоках устанавливается последовательность обработки программы пользователя.

Ошибка исполнения — Ошибка, возникающая при обработке программы пользователя в системе автоматизации (т.е. не в управляемом процессе).

Память пользователя содержит  кодовые блоки и  блоки данных программы пользователя. Память пользователя может быть встроена в CPU или находиться на вставных платах или модулях памяти. Однако прикладная программа в принципе обрабатывается из  рабочей памяти CPU.

Параметр

1. Переменная кодового блока STEP 7

2. Переменная для настройки поведения модуля (одна или несколько на модуль). Каждый модуль при поставке обладает некоторой рациональной основной настройкой, которая может быть изменена конфигурированием с помощью STEP 7. Параметры бывают  статические и  динамические

Параметры, динамические — Динамические параметры модулей, в противоположность статическим, могут  быть изменены во время работы вызовом SFC в программе пользователя, например, граничные значения аналогового сигнального модуля ввода.

Параметры модуля — это величины, с помощью которых можно управлять реакцией модуля. Различают статические и динамические параметры модуля.

Статические параметры модулей, в противоположность динамическим, не могут быть изменены посредством программы пользователя, а только путем конфигурирования в STEP 7, например, входное запаздывание цифрового сигнального модуля ввода.

Плавающий потенциал — Потенциал, не имеющий гальванической связи с землей.

Платы микропамяти . это средства запоминания для CPU и CP. От  платы памяти MMC отличается только меньшими размерами.

Платы памяти . это средства запоминания в формате пластиковых карточек для CPU и CP. Они реализуются как  RAM или  FEPROM.

Потенциальная развязка — У потенциально развязанных модулей ввода/вывода опорные потенциалы  управляющих и рабочих цепей тока гальванически разделены; например, оптическим элементом связи, контактом реле или трансформатором. При этом цепи ввода и вывода могут быть подключены к общему потенциалу.

Потенциальная связь — У потенциально связанных модулей ввода/вывода опорные потенциалы управляющих и рабочих цепей тока электрически соединены.

Прерывание —  Операционная система CPU знает 10 различных классов приоритетов, регулирующих обработку программы пользователя. К этим классам приоритетов принадлежат, среди прочего, прерывания, напр., аппаратные прерывания. При появлении прерывания операционной системой автоматически вызывается соответствующий организационный блок, в котором пользователь может запрограммировать желаемую реакцию (напр., в FB).

Прерывание, зависящее от производителя, может генерироваться slave- устройством DPV1. Оно приводит к вызову OB 57 в master-устройстве DPV1.

Прерывание по времени относится к одному из классов приоритета при обработке программы SIMATIC S7. Оно генерируется в зависимости от определенной даты (или ежедневно) и времени суток (напр., 9:50 или ежечасно, ежеминутно). Затем обрабатывается соответствующий организационный блок.

Прерывание по обновлению может генерироваться slave-устройством DPV1. Оно приводит к вызову OB 56 в master-устройстве DPV1.

Прерывание по состоянию может генерироваться slave-устройством DPV1.

Оно приводит к вызову OB 55 в master-устройстве DPV1.

Прерывание с задержкой принадлежит к одному из классов приоритета при обработке программы SIMATIC S7. Оно генерируется по истечении времени работы запущенного в программе пользователя таймера. Затем обрабатывается соответствующий организационный блок.

Приоритет OB —  Операционная система CPU различает классы приоритета, например, циклическую обработку программы, обработку программы, управляемую аппаратными прерываниями. Каждому классу приоритета поставлены в соответствие организационные блоки (ОВ), в которых пользователь S7 может запрограммировать некоторую реакцию. В соответствии со стандартом ОВ имеют различные приоритеты, определяющие в какой последовательности они должны обрабатываться или, наоборот, прерывать друг друга в случае одновременного вызова.

Подсети с SIMATIC

SIMATIC предлагает следующие подсети в соответствии с различными уровнями автоматизации (уровень управления предприятием, цеховой уровень, полевой уровень, уровень датчиков и исполнительных устройств):

  • многоточечный интерфейс (MPI)
  • PROFIBUS
  • двухточечное соединение (PtP)
  • Industrial Ethernet
  • интерфейс с датчиками и исполнительными устройствами (ASI)

Многоточечный интерфейс (MPI)

MPI . это подсеть малой протяженности и с малым количеством абонентов для полевого и цехового уровня. MPI . это интерфейс, способный объединять несколько точек в SIMATIC S7/M7 и C7. Он разрабатывался как интерфейс для устройства программирования (PG) и задумывался для соединения нескольких CPU между собой или с PG для обмена небольшими объемами данных.

MPI всегда сохраняет последнюю параметризацию относительно скорости передачи, номера абонента и наивысшего адреса MPI, в том числе после полного стирания памяти, исчезновения напряжения и стирания параметризации CPU.

PROFIBUS

Наличие: CPU с буквами «DP» после номера имеют интерфейс DP в качестве своего второго интерфейса (напр., 315-2 DP)

PROFIBUS . это сеть для полевого и цехового уровня в открытой, независимой от изготовителя системе связи SIMATIC.

PROFIBUS предлагается в двух вариантах:

1. в качестве полевой шины PROFIBUS-DP для быстрого циклического обмена данными и PROFIBUS-PA для организации связи в областях, требующих обеспечения взрывобезопасности

2. в качестве PROFIBUS (FDL или PROFIBUS-FMS) для быстрой передачи данных между равноправными партнерами по связи на цеховом уровне.

PROFIBUS-DP и PROFIBUS-FMS можно реализовать также с помощью коммуникационных процессоров (CP).

Двухточечное соединение (PtP)

Наличие: CPU с буквами «PtP» после номера имеют двухточечный интерфейс (PtP) в качестве своего второго интерфейса (напр., 314-2 PtP)

Двухточечное соединение не является сетью в обычном смысле, так как друг с другом соединены только две станции. Для этого соединения вам нужны коммуникационные процессоры (CP) для связи между двумя точками.

Industrial Ethernet

Реализация с помощью коммуникационных процессоров (CP). Industrial Ethernet . это сеть для уровня управления предприятием и цехового уровня в открытой, независимой от изготовителя системе связи SIMATIC.

Industrial Ethernet пригоден для быстрой передачи больших объемов данных.

Через межсетевые шлюзы он предоставляет возможность соединения абонентов разных сетей.

Подключение к Industrial Ethernet в случае CPU S7-300 можно реализовать только через коммуникационные процессоры.

Интерфейс с исполнительными устройствами и датчиками (ASI)

Реализация с помощью коммуникационных процессоров (CP). AS-интерфейс (ASI, интерфейс с исполнительными устройствами и датчиками) . это сетевая подсистема для самого нижнего уровня в системах автоматизации. Он служит для объединения в сеть цифровых датчиков и исполнительных устройств. Передаваемый объем данных составляет не более 4 бит на ведомую станцию.

Подключение к интерфейсу с исполнительными устройствами и датчиками в случае CPU S7-300 можно реализовать только через коммуникационные процессоры.

Одинаковая структура MPI и PROFIBUS-DP

Для построения сети MPI рекомендуется использовать те же сетевые компоненты, что и для построения сети PROFIBUS-DP. При построении действуют те же самые правила.

Мой блог находят по следующим фразам

Структура проекта S-200

Проект создает пять собственных компонентов:

Рис. 1 Компоненты проекта S7-200

Загрузка компонентов проекта в CPU и выгрузка из CPU

Для загрузки проекта в CPU S7–200 нужно:

  • Выбрать команду меню File >Download.
  • Щелкнуть на элементе проекта, который необходимо загрузить.
  • Щелкнуть на кнопке Download

Установка режима работы CPU S7–200

S7–200 имеет два режима работы: STOP и RUN. В состоянии STOP S7–200 не выполняет программы, и можно загрузить в CPU программу или конфигурацию CPU. В режиме RUN S7–200 исполняет программу. Для изменения режима работы S7–200 снабжен переключателем режимов. С помощью переключателя режимов можно установить режим работы вручную:

  • установка переключателя режимов в STOP прекращает исполнение программы;
  • установка переключателя режимов в RUN запускает исполнение программы;
  • установка переключателя режимов в режим TERM (терминал) не изменяет режима работы.

Если питание прерывается, когда переключатель режимов находится в положении STOP или TERM, S7–200 при восстановлении питания автоматически переходит в состояние STOP. Если питание прерывается, когда переключатель режимов находится в положении RUN, S7–200 при восстановлении питания переходит в режим RUN.

STEP 7-Micro/WIN в режиме online дает возможность изменить режим работы S7–200. Чтобы это программное обеспечение могло управлять режимом работы, нужно вручную перевести переключатель режимов работы на S7– 200 в положение TERM или RUN. Для изменения режима работы можно использовать команды меню PLC > STOP или PLC > RUN или соответствующие кнопки на панели инструментов.

Для перевода S7–200 в состояние STOP можно использовать в программе команду STOP. Это позволяет прекратить исполнение программы в зависимости от логики обработки.

Программный блок Программный блок содержит исполняемый код и комментарии. Исполняемый код состоит из основной программы (OB1) и некоторых подпрограмм или программ прерываний. Код компилируется и загружается в PLC. Комментарии не компилируются и не загружаются.

Блок данных DB. Блок данных содержит данные (начальные значения переменных, значения констант) и комментарии. Данные компилируются и загружаются в PLC. Комментарии не компилируются и не загружаются.

Системный блок System Block. Системный блок содержит данные конфигурации, такие как параметры коммуникации, области сохраняемых данных, аналоговые и цифровые входные фильтры, значения выходов в случае перехода в STOP (и информацию о пароле). Системный блок загружается в PLC.

Таблица символов «Symbol Name». Таблица символов позволяет Вам использовать символическую адресацию. Символика часто делает программирование более простым и облегчают чтение программ. Скомпилированная программа, которая загружается в PLC преобразует все символы в абсолютные адреса. Информация таблицы символов не загружается в PLC.

Диаграмма состояний Status Chart. Информация диаграммы состояний не загружается в PLC. На диаграмме состояния можно ввести адреса программы для мониторинга и модификации. Величины таймеров или счетчиков могут быть отображены, как биты или слова. Если выбирается битовый формат, то отображается состояние выхода (ON или OFF). Если выбирается формат слова, то отображается текущая величина таймера или счетчика.

Использование таблицы символов для символической адресации переменных

Таблица символов используется для присвоения символических имён входам, выходам и адресам.

Символическое имя:

  • Максимум 23 символа
  • Большая, маленькая буква имеет смысл
  • Пробел заменяется знаком подчёркивания.
  • Повторяющиеся символьные имена подчёркиваются, не компилируются и не могут быть использованы в программе.

Таблица символов дает возможность определять и редактировать символы, к которым можно обращаться во всей программе через символические имена. Таблица символов называется также таблицей глобальных переменных.

Можно указывать операнды команд в программе абсолютно или символически. При абсолютной адресации задается область памяти, а также бит или байт адреса. При символической адресации для указания адреса используются комбинации алфавитно- цифровых символов.

Для присвоения адресу символического имени необходимо:

1. Щелкнуть в навигационной панели на кнопке таблицы символов, чтобы вызвать таблицу.

2. Ввести символическое имя (например, Pump1Limit) в столбце «Symbol Name». Максимальная длина символического имени составляет 23 символа.

3. В столбце Address ввести адрес (например, I1.1).

Рис. 2 Таблица символов

Открыть таблицу символов можно с помощью щелчка правой кнопкой «мыши» на символе модуля. После этого во всплывающем окне выбирается пункт Edit Symbolic Names (Редактирование символьных имен). После этого открывается таблица символов с соответствующими адресами. Для программы создается только одна таблица символов, независимо от того, какой язык программирования выбран. Нельзя использовать одну и ту же строку более одного раза в качестве глобального символического имени ни в единственной таблице, ни в нескольких различных таблицах!

Использование таблицы состояний (Status Chart)

С помощью таблицы состояний (Status Chart) можно наблюдать и изменять переменные процесса, когда S7– 200 исполняет программу управления. Можно отслеживать состояние входов, выходов или переменных программы, отображая их текущие значения. В таблице состояний можно также принудительно задавать или изменять значения переменных процесса.

Для вызова таблицы состояний необходимо выбрать команду меню View > Component > Status Chart или щелкнуть на пиктограмме таблицы состояний на навигационной панели.

Рис. 3 Таблица состояний

Для создания таблицы состояний и контроля переменных:

1. Введите в поле адресов адреса желаемых величин.

2. В столбце Format выберите тип данных.

3. Для отображения состояния переменных процесса в своем S7–200 выберите команду меню Debug > Chart Status.

4. Если вы хотите опрашивать эти величины непрерывно или хотите однократно считать состояние, щелкните на соответствующем символе на панели инструментов.

В таблице состояний можно также принудительно устанавливать или изменять значения различных переменных процесса.В таблицу состояний можно вставлять дополнительные строки, выбрав команду меню Edit > Insert >Row.

Невозможно отобразить состояния констант, аккумуляторов и локальных переменных. Значения таймеров и счетчиков можно отображать в виде бита или слова. Если значение отображается в виде бита, то оно представляет состояние бита таймера или счетчика; если значение отображается в виде слова, то оно является значением таймера или счетчика.

 

Мой блог находят по следующим фразам

Запуск Micro/WIN

Рабочий стол Windows имеет иконку “STEP 7-Micro/WIN 32″ и пункт «STEP 7-Micro/WIN 32» в разделе SIMATIC стартового меню. Запустить эту программу, как и любое приложение Windows, можно двойным щелчком мышью на иконке или выбором пункта в стартовом меню.

Для открытия STEP 7-Micro/WIN дважды щелкните на символе STEP 7-Micro/WIN или выберите команду меню Start > SIMATIC > STEP 7 MicroWIN 32 V4.0 [Пуск > SIMATIC > STEP 7 MicroWIN 32 V4.0 (Рис.1)

Рис.1 Окно STEP 7-Micro/WIN

Элементы окна

Панель заголовка Панель заголовка содержит имя окна и кнопки управления окном (Рис.2). Строка меню Содержит все меню, доступные для активного окна.

Панель инструментов Содержит наиболее часто используемые команды меню в форме кнопок с изображениями.

Панель навигации Содержит иконки для активации функций программы.

Дерево команд Показывает все элементы проекта и все команды, доступные в активном редакторе программ (LAD, FBD или STL).

Окно вывода Когда программа компилируется , в выходном окне появляются информационные сообщения.

Строка состояния Показывает текущее состояние и другую информацию (Рис.2).

Рис.2 Элементы окна

Рабочая область для создания программы управления

Навигационная панель (Рис.3) предлагает группы символов для доступа к различным функциям программирования STEP 7-Micro/WIN.

Дерево команд отображает все объекты проекта и команды, необходимые для создания программы управления. Отдельные команды из этого дерева можно тащить в свою программу или вставлять команду двойным щелчком в текущее положение курсора в редакторе программ.

Редактор программ содержит логику программы и таблицу локальных переменных, в которой можно назначить символические имена для временных локальных переменных.

Рис. 3 Рабочая область для создания программы управления

Мой блог находят по следующим фразам