1

Трансвекторное управление (FOC)

Как известно, полная управляемость электропривода обеспечивается, если обеспечивается управление электромагнитным моментом двигателя. Во всех электромеханических преобразователях вращающий момент образуется в результате взаимодействия магнитных полей статора и ротора или, что то же самое, магнитного поля одного элемента и тока другого. Для получения однозначных функций управления обе величины должны быть независимы друг от друга, и тогда одну из них можно поддерживать постоянной, а с помощью другой осуществлять регулирование. В ДПТ и синхронных двигателях существуют отдельные электрические цепи для управления магнитным потоком и моментом. В короткозамкнутых АД есть только один канал, в котором объединены обе составляющие тока и в задачу системы управления входит функция их разделения. Математически эта задача элементарно решается при использовании уравнений обобщённой электрической машины в векторной форме. В результате выбора пары векторов величин образующих электромагнитный момент и системы координат, в которой они представлены, можно получить уравнение момента в виде функции независимых проекций этих величин на координатные оси. И тогда управление моментом сведется к управлению проекциями векторов. Отсюда и происходит название способа.

В 1971 году Ф. Блашке (F. Blaschke) сформулировал принцип управления, запатентованный фирмой Siemens и названный трансвекторным управлением (TRANSVEKTOR®-Regelung). Математической основой его являются уравнения электромагнитных процессов в АД в векторной форме, представленные в системе координат ориентированной по направлению магнитного поля. В англоязычной литературе этот принцип называется field-oriented control (FOC), т.е. «управление с ориентацией по полю». Он успешно используется до настоящего времени и полностью ассоциируется с понятием векторного управления, хотя в последнее время с развитием устройств обработки информации появился другой способ, в котором также используется векторное представление величин, но алгоритм управления отличается от трансвекторного. Этот способ называется прямым управлением моментом (DTC direct torque control).

Для построения систем векторного управления АД могут быть использованы любые пары векторов, с помощью которых можно представить электромагнитный момент обобщённой электрической машины. Однако от выбора векторов в значительной мере зависит степень сложности системы. Желательно, чтобы величины, представленные векторами в уравнении момента были наблюдаемы, т.е. чтобы их можно было непосредственно измерить и воздействовать на них при управлении моментом. У короткозамкнутого АД есть только две такие величины – это напряжение и ток статора, и только одна из них, а именно ток статора, может входить в уравнение момента. Тогда другой величиной может быть только ток ротора или какое-либо потокосцепление. Ток ротора принципиально не наблюдаем, а устройства его идентификации по наблюдаемым параметрам сложны и ненадежны. Поэтому для выбора остаются три потокосцепления:

статора, ротора и основное, т.е. магнитный поток в зазоре АД. Потокосцепление статора и рабочий поток АД можно непосредственно измерить и использовать этот сигнал в системе управления, что часто и делается при создании приводов высокого качества. В массовых же изделиях разработчики стараются использовать сигналы, доступные без установки датчиков, т.е. все те же ток и напряжение статора, по мгновенным значениям которых можно вычислить, например, потокосцепление статора как Трансвекторное управление (FOC), image0028 Однако при выборе потокосцепления статора или основного потокосцепления передаточные функции системы управления получаются довольно сложными и мало подходящими для практического использования.

Простейший вид имеют уравнения электромагнитных процессов в АД в случае представления их через вектор потокосцепления ротора ψ2 . То обстоятельство, что ψ2 невозможно измерить не является препятствием для выбора, т.к. магнитный поток ротора легко вычисляется по потоку статора или по рабочему потоку. Поэтому в дальнейшем мы ограничимся рассмотрением наиболее распространенных систем, использующих для регулирования электромагнитного момента ток статора и потокосцепление ротора и соответствующее уравнение момента.

Поскольку форма уравнений потокосцеплений инвариантна к выбору системы координат, то в произвольной системе mn уравнение момента будет иметь вид

Трансвекторное управление (FOC), image0045

Векторы ψ2 и i1вращаются в пространстве с угловой частотой ω1 = 2πf1 / zp .

Поэтому если для описания процессов выбрать неподвижную систему координат или систему координат, вращающуюся синхронно с ротором АД, то проекции векторов будут синусоидальными функциями времени и регулирование таких величин будет сложной технической задачей. В случае же выбора системы координат вращающейся в пространстве с синхронной частотой ω1 , проекции векторов будут постоянными величинами, и управление будет не сложнее, чем управление токами якоря и возбуждения ДПТ.

Задачу управления можно еще более упростить, если совместить какую-либо ось системы координат с одним из двух векторов. Тогда проекция опорного вектора на эту ось будет равна его модулю, а другая проекция будет равна нулю. При этом в уравнении электромагнитного момента исчезнет соответствующее слагаемое в правой части.

Трансвекторное управление (FOC), image0063

Векторы определяющие электромагнитный момент в произвольной синхронной (xy) и ориентированной по полю (dq) системах координат.

Следовательно, если для управления электромагнитным моментом АД выбрать векторы потокосцепления ротора и тока статора и синхронную систему координат dq , совместив ось d с вектором ψ2 , то уравнение примет вид

Трансвекторное управление (FOC), image0082

который в принципе ничем не отличается от соответствующего выражения для ДПТ и основной задачей системы управления будет идентификация проекций ψ2d и i1q . Если при этом управление построить так, чтобы потокосцепление ротора сохранялось во всех режимах постоянным, то регулирование момента АД будет осуществляться изменением поперечной составляющей тока статора i1q , выполняющей в такой системе функцию тока якоря.

Следует заметить, что в ориентированной по магнитному полю системе координат не только исключается влияние продольной составляющей тока статора i1d на векторное произведение, т.е. на электромагнитный момент АД, но с помощью этой проекции становится возможным управлять магнитным потоком. Это объясняется с тем, что ток статора в короткозамкнутом АД определяет все процессы в машине и если одна из его компонент не влияет на момент, то она тем или иным способом должна быть связана с магнитным потоком. В то же время, система координат dq ортогональна, поэтому изменение одной из проекций тока никоим образом не влияет на другую, и управление моментом и потоком может производиться независимо.

Таким образом, принцип трансвекторного управления заключается в раздельном управлении магнитным потоком и моментом АД с помощью независимых составляющих тока статора, соответствующих проекциям вектора тока на оси системы координат, ориентированной по направлению вектора магнитного потока.

Это определение полностью подходит и для ДПТ, если токи возбуждения и

якоря объединить в вектор, представленный в системе координат, ориентированной по оси главных полюсов. Отличие АД от ДПТ заключается только в том, что в АД система координат вращается вместе с потоком, а в ДПТ она неподвижна.

Реальные же токи статора АД протекают в неподвижных обмотках и соответствуют проекциям вектора тока на неподвижную систему фазных осей координат.Поэтому при трансвекторном управлении АД необходимы координатные преобразования.

В неподвижной системе координат продольная и поперечная составляющие определяют амплитуду и фазу тока статора АД по отношению к магнитному потоку совершенно аналогично тому, как активная и реактивная составляющие определяют эти параметры по отношению к напряжению. Если задать значение продольной составляющей i1d , соответствующим требуемому магнитному потоку, а поперечной i1q – требуемому моменту на валу, то тем самым будет определен вектор тока статора в синхронной системе координат. После этого можно преобразовать синхронную систему координат dq в неподвижную αβ и разложить вектор тока на фазные проекции, в результате чего образуются синусоидальные сигналы, соответствующие фазным токам которые нужно сформировать в обмотках статора, чтобы получить заданный электромагнитный момент.

Преобразование системы координат невозможно без информации о пространственном положении опорного вектора ψ2 в каждый момент времени. Эту информацию можно получить непосредственным измерением магнитного потока статора или рабочего потока с помощью датчиков, а затем вычислить ψ2 , или вычислить его по мгновенным значениям фазных напряжений и токов статора.

Трансвекторное управление реализуется техническими устройствами с различными функциями и алгоритмами, но суть его при этом остается неизменной и в дальнейшем мы рассмотрим несколько таких вариантов.

 

Раздел: Частотный преобразователь Метки: ,

1 комметарий к "Трансвекторное управление (FOC)"

  1. Карен Саакян:

    Спосибо!!!

Оставить комментарий

Отправить сообщение

CoDeSys GSM/GPRS модем Lectus OPC MasterSCADA Modbus MX110 Omron OPC-сервер owen owen logic PLC Configuration PROFIBUS s-200 SCADA scada системы siemens siemens plc SIMATIC Simplight SMS step7 TRACE MODE Динамизация ИП-320 МЭК 1131–3 ОВЕН ОВЕН ПЛК ОВЕН ПЧВ ПЛК ПЛК ОВЕН ПР 110 Панель оператора Программируемое реле Частотный преобразователь библиотека в CoDeSys визуализация диспетчеризация конфигурация панели программирование ПЛК серия NS сименс плк частотник частотное управление язык CFC язык ST
.