0

Оптоволоконный кабель

Оптоволоконный кабель

Оптоволоконный кабель разительно отличается от всех видов кабеля, так как перенос электрических сигналов по медным проводникам в нем не используется. Вместо этого для передачи двоичных данных применяются световые импульсы. В силу того, что оптоволоконный кабель использует свет (фотоны) вместо электричества, почти все проблемы, присущие медному кабелю, такие как электромагнитные помехи, перекрестные помехи (переходное затухание) и необходимость заземления, полностью устраняются. Вдобавок, чрезвычайно уменьшается погонное затухание, позволяя протягивать оптоволоконные связи без регенерации сигналов на много большие дистанции, достигающие 120 км.

Оптоволоконный кабель идеально подходит для создания сетевых магистралей, и в особенности для соединения между зданиями, так как он нечувствителен к влажности и другим внешним условиям. Также он обеспечивает повышенную по сравнению с медью секретность передаваемых данных, поскольку не испускает электромагнитного излучения, и к нему практически невозможно подключиться без разрушения целостности.

Недостатки оптоволокна в основном связаны со стоимостью его прокладки и эксплуатации, которые обычно намного выше, чем для медной среды передачи данных. Эта разница стала привычной, тем не менее, в последние годы она стала сглаживаться. Сама оптоволоконная среда только слегка дороже UTP категории 5.

Но независимо от указанных преимуществ и недостатков применение оптоволокна приносит с собой другие проблемы, такие как процесс прокладки. Разводка оптоволоконного кабеля в основном ничем не отличается от укладки медного, но присоединение коннекторов требует принципиально иного инструмента и технических навыков.

Оптоволоконный кабель известен уже долгое время, его поддерживали даже ранние стандарты Ethernet для пропускной способности 10 Мбит/с. Первый из них получил название FOIRL (Fiber-Optic Inter-Repeater Link), а последующий — 10BaseF. Несмотря на это, оптоволокно позиционируется как высокоскоростная сетевая технология, и сегодня фактически все применяемые протоколы Канального уровня используют его в той или иной форме. Вот некоторые из них:

  • Fast Ethernet (100BaseFX);
  • Gigabit Ethernet (1000BaseFX);
  • Token Ring;
  • Fiber Distributed Data Interface (FDDI);
  • 100VG-AnyLAN;
  • Asynchronous Transfer Mode;
  • Fibre Channel.

Как и медный, оптоволоконный кабель обычно применяется в сетях топологии «шина» или «звезда», хотя протокол FDDI популяризирует «двойное кольцо» (double ring), которое в целях обеспечения отказоустойчивости состоит из двух резервных «колец», по которым трафик передается в противоположных направлениях.

Оптоволоконный кабель состоит из сердечника, сделанного из стекла (кварца) или полимера, оболочки, окружающей сердечник, затем следует слой пластиковой прокладки и волокна из кевлара для придания прочности. Вся эта структура помещена внутрь тефлоновой или поливинилхлоридной «рубашки». Геометрия и свойства сердцевины и оболочки дают возможность передавать сигнал на относительно большие расстояния. Показатель преломления сердечника немного выше, чем у оболочки, что делает внутреннюю поверхность оболочки отражающей. Когда световой импульс передается по сердечнику, он отражается от оболочки и распространяется дальше. Отражение света позволяет изгибать кабель под разными углами, при этом сигнал может по-прежнему передаваться без потерь.

Оптоволоконный кабель, image00213

1 — сердечник

2 — отражающая оболочка

3 — покрытие первичного буфера

4 — покрытие вторичного буфера 900μ

Существует два типа оптоволоконного кабеля: одномодовый (singlemode) и многомодовый (miltitmode). Основное отличие между ними заключается в толщине сердечника и оболочки. Одномодовый световод обычно имеет толщину порядка 8,3/125 микрон, а многомодовое волокно — 62,5/125 микрон. Эти значения соответствуют диаметру сердечника и диаметру вместе взятых сердечника и оболочки. Световой луч, распространяющийся по сравнительно тонкому сердечнику одномодового кабеля, отражается от оболочки не так часто, как это происходит в более толстом сердечнике многомодового кабеля. Сигнал, передаваемый одномодовым кабелем, генерируется лазером, и представляет собой волну только одной длины, в то время как многомодовые сигналы, генерируемые светодиодом (LED, 1ight-emitting diode), переносят волны различной длины. Эти качества позволяют одномодовому кабелю функционировать с большей пропускной способностью по сравнению с многомодовым и преодолевать расстояния в 50 раз длиннее.

С другой стороны, одномодовый кабель намного дороже и имеет сравнительно большой радиус изгиба по сравнению с многомодовым, что делает работу с ним неудобной. Большинство оптоволоконных сетей используют многомодовый кабель, который хотя и уступает по производительности одномодовому, но зато значительно эффективней, чем медный. Телефонные компании и кабельное телевидение, тем не менее, стремятся применять одномодовый кабель, так как он может передавать большее количество данных и на более длинные дистанции.

Обычно для оптоволоконного кабеля используются ST-коннекторы (straight tip, прямой штырь). Это — бочкообразные соединители с байонетной системой крепления, как показано на рис. с права. Более новый тип разъемов называется SC-коннекторы (subscritber connector). В настоящее время он приобретает все большую популярность. SC-коннекторы имеют прямоугольную форму и вставляются в гнездо, где просто фиксируются (метод «Push-Pull») защелкой. Рис. слева. Коннекторы могут присоединяться к оптоволоконному кабелю несколькими способами: либо с применением опрессовочных монтажных средств, либо с использованием эпоксидного клея. В отличие от инструмента для обжатия медного кабеля, который можно приобрести за сумму около 100 $, аналогичный набор инструментов для оптоволоконного кабеля будет стоить 1000 $.

Оптоволоконный кабель, image0046 Оптоволоконный кабель, image0063

В настоящее время сфера применения оптоволоконного кабеля в основном ограничена высокоскоростными сетевыми магистралями. Для горизонтальной кабельной разводки он используется не часто в силу высокой стоимости установки и обслуживания. Однако в этой области данная технология имеет большой потенциал. Применение оптоволоконного кабеля дает проектировщикам сети свободу, какая никогда не может быть достигнута при помощи медного кабеля. В силу того, что оптоволокно позволяет сегментам иметь длину много большую, чем 100 метров у сегментов UTP, отпадает необходимость в использовании телекоммуникационных монтажных шкафов с коммутаторами или концентраторами, распределенных по всей сети. Вместо этого горизонтальная разводка может начинаться от настенных розеток и сводиться напрямую в центральную аппаратную комнату, где будут находиться все сетевые коммутационные панели, концентраторы, коммутаторы, маршрутизаторы и другие подобные устройства. Такая кабельная система называется

Локализованной магистралью (collapsed backbone). Это решение явно лучше, поскольку основная техническая поддержка сетевой инфраструктуры производится только в одном месте, а не распределяется по всем удаленным областям сети.

Прокладка сетевого кабеля может быть простой, если надо просто купить в компьютерном магазине нескольких готовых кабелей и прикрепить их к плинтусу, или сложной в случае, когда необходимо соединить с сетевой магистралью тысячу рабочих станций в офисном здании с множеством помещений. Как упоминалось ранее в этой главе, прокладка кабеля — это часть процесса создания ЛВС, которая обычно поручается сторонним специалистам, но не из-за того, что это технически очень трудновыполнимая работа. Просто она утомительна и требует много времени. Однако, как и большинство профессионалов, укладчики кабеля с соответствующим инструментом и навыками могут сделать всю работу так, что со стороны будет казаться, что это легко и быстро.

Несмотря на то, что для небольшой сети может использоваться готовый кабель, скрытая внутренняя проводка (когда кабель спрятан в стены и потолки) использует кабель в бухте. Создание такой проводки (предполагается, что будет применен какой-либо общедоступный сегодня тип кабеля, такой как UTP или оптоволокно) должно включать в себя несколько основных этапов.

  1. Продумать план, описывающий местоположение кабельных узлов, куда будут сходиться все кабели, и настенных розеток.
  2. Проложить кабель через стены и потолки до каждой рабочей станции.
  3. Установить настенную розетку рядом с каждой рабочей станцией и присоединить конец кабеля к контактам розетки.
  4. В кабельном узле разместить на стене коммутационную панель и вставить каждый подведенный кабель в разъем панели.
  5. Протестировать каждое соединение с применением соответствующего оборудования.
  6. Используя готовые фабричные коммутационные кабели, соединить порты коммутационной панели с соответствующим концентратором, а компьютеры — с гнездами настенных розеток.
Раздел: Автоматизация на базе ПЛК Метки: 

Оставить комментарий

Отправить сообщение

CoDeSys GSM/GPRS модем Lectus OPC MasterSCADA Modbus MX110 Omron OPC-сервер owen OWEN Easy Logic owen logic PLC Configuration PROFIBUS s-200 SCADA scada системы siemens siemens plc SIMATIC Simplight SMS step7 TRACE MODE Динамизация ИП-320 ОВЕН ОВЕН ПЛК ОВЕН ПЧВ ПЛК ПЛК ОВЕН ПР 110 Панель оператора Программируемое реле Частотный преобразователь библиотека в CoDeSys визуализация диспетчеризация конфигурация панели программирование ПЛК серия NS сименс плк частотник частотное управление язык CFC язык ST
.