0

ISaGRAF 5 – основа для создания распределенных приложений на базе стандарта IEC61499 (часть 1)

Рассматривается стандарт IEC61499, разработанный международной электротехнической комиссией с целью унификации правил создания и применения функциональных блоков в распределенных измерительных и управляющих системах. Предложена первая в мире реализация этого инновационного стандарта в среде программирования контроллеров ISaGRAF 5 компании ICS Triplex (www.icstriplex.com).

Что такое IEC61499?

Стандарт IEC61499 определяет распределенную, управляемую событиями архитектуру и требования к программному инструментарию для инкапсуляции, встраивания, развертывания и интеграции программного обеспечения в интеллектуальных устройствах, машинах и системах. В основу проекта были положены такие стандарты, как IEC61131-3 и IEC61158 (Fieldbus).

Разработка стандарта велась в рамках международной электротехнической комиссии МЭК (IEC, International Electrotechnical Commission) в рабочей группе WG63 технического комитета TC65. Обсуждение будущего стандарта IEC61499 началось в октябре 1990 г., активная работа над ним – в марте 1992 г., период апробации подготовленного проекта стандарта – в марте 2001 г. и, наконец, завершение разработки – в 2005 г.

Стандарт IEC61499 разделен на четыре части, но реализация стандарта IEC61499 в ISaGRAF основывается на первой и второй частях стандарта.

  • Часть 1. Архитектура и функциональные блоки.
  • Часть 2. Требования к программным средствам.

Стандарт IEC61499 определяет распределенную модель как разбиение различных частей промышленного процесса автоматизации и сложной системы управления на функциональные модули, называемые функциональными блоками. Эти функциональные блоки могут распределяться и взаимодействовать через множество контроллеров. В связи с этим стандарт IEC61499 вводит следующие понятия.

System (Система): набор устройств, связанных и взаимодействующих друг с другом посредством коммуникационной сети, состоящей из сегментов и соединений.

Device (Устройство): независимая физическая единица, способная к выполнению одной или более определенных функций в конкретном контексте и ограниченная интерфейсами устройства.

Resource (Ресурс): функциональная единица, имеющая независимое управление его работой и обеспечивающая различные сервисы для приложений, включая планирование и выполнение алгоритмов.

Application (Приложение): программная функциональная единица, которая является специфичной для решения проблемы в системе управления и измерения. Приложения могут быть распределены между устройствами и могут взаимодействовать с другими приложениями.

Function block (Функциональный блок, ФБ): программная функциональная единица, которая является наименьшим элементом в распределенной системе управления. Функциональный блок использует машину состояний (state machine) с диаграммой управления выполнением (execution control chart – ECC) для задания алгоритма работы ФБ.

На рис. 1 показана распределенная модель системы в соответствии с моделью IEC61499. Приложение становится распределенным путем размещения экземпляров функциональных блоков на различных ресурсах в одном или более устройствах. Функциональные блоки являются атомарными элементами распределения. Приложение со многими функциональными блоками отображается как один элемент, хотя экземпляры функциональных блоков распределяются по ресурсам и устройствам.

ISaGRAF 5 – основа для создания распределенных приложений на базе стандарта IEC61499 (часть 1), image0023

Рисунок 1Общая диаграмма системы в стандарте IEC61499

Рисунок 2 показывает систему управления, имеющую много устройств, соединенных вместе с помощью управляющей сети. Также на рис. 2 показаны приложения, распределенные по нескольким устройствам.

ISaGRAF 5 – основа для создания распределенных приложений на базе стандарта IEC61499 (часть 1), image0044

Рисунок 2 Пример системы с распределенными приложениями

Многие устройства соединяются вместе через коммуникационную сеть. В ISaGRAF устройство – это аппаратное средство (контроллер), способное выполнять цикл управления. Устройство – это контроллер, который имеет процессор, память, а также может присоединяться к коммуникационной сети, когда оно используется в распределенном приложении. Устройства решают задачу управления или измерения и могут быть в составе интеллектуального исполнительного механизма, такого как клапан или расходометр. Любая полевая шина может работать как коммуникационная сеть. Среди часто используемых полевых шин (протоколов) – Profibus, DeviceNet, Industrial Ethernet. Некоторые сети являются более быстрыми, в то время как другие – более детерминированными. Выбор сети зависит от процесса управления.

Приложение может содержать один или более циклов управления. Например, ввод данных выполняется на одном устройстве, управление – на втором и преобразование выходных данных – на третьем устройстве. Эти совместные циклы управления разделяют данные предсказуемым и детерминированным образом, описанном в стандарте IEC61499.

В ISaGRAF каждая система может быть распределенной, и это может быть показано средствами ISaGRAF с различных точек зрения. Например, может быть показана Модель Системы, как на рис. 3. Все пиктограммы функциональных блоков (желтые символы) справа от имени приложения указывают на распределение по устройствам. Пиктограмма, показанная ниже устройства, означает, что программа имеет часть, выполняющуюся в этом устройстве. Отсутствие пиктограммы ниже устройства означает, что программа не имеет части, выполняющейся на этом устройстве. Коммуникационная сеть соединяет вместе устройства, которые являются частью распределенной системы. Коммуникационная сеть отображается в ISaGRAF, если она сконфигурирована в системе. Причем часть устройств может использовать одну коммуникационную сеть, в то время как другие устройства – другую сеть. На рис. 3 в качестве коммуникационной сети выступает Ethernet. Элементы ISaGRAF используют коммуникационную сеть в прозрачном режиме. При построении и компиляции приложения генерируются все требуемые для связи параметры. Рисунок 3 показывает систему, состоящую из устройств, коммуникационной сети и приложений в виде Модели Системы. Приложение Application_A имеет части, работающие на первом, втором и третьем устройствах. Приложение Application_B имеет части, выполняемые на двух последних устройствах системы. Приложение Application_C работает только на первом устройстве. Каждая часть Application_A обменивается соответствующей информацией через коммуникационную сеть. Аналогично и для Application_B.

ISaGRAF 5 – основа для создания распределенных приложений на базе стандарта IEC61499 (часть 1), image006

Рисунок 3 Представление Модели Системы распределенного приложения в ISaGRAF

В представлении Модели Системы двойной клик на приложении отображает его схематический вид. Схематический вид – это Модель Приложения (рис. 4). В этом виде нет границ устройств. Это одна общая схема для распределенного приложения. Каждому функциональному блоку в приложении может присваиваться ресурс, который одновременно присваивается и устройству.

Событие и сигналы данных между функциональными блоками очень просто рисовать. Генератор распределения ISaGRAF создает все требуемые связи между этими сигналами. Эти связи обмениваются информацией прозрачно по коммуникационному интерфейсу. Средства ISaGRAF заботятся обо всех аспектах распределения приложения. В частности, в коммуникационный интерфейс и в алгоритм выполнения добавляются задержки, которые должны браться в расчет во время проектирования распределенного приложения.

ISaGRAF 5 – основа для создания распределенных приложений на базе стандарта IEC61499 (часть 1), image008

Рисунок 4 Представление Модели Приложения в ISaGRAF в соответствии с IEC61499

Прежде всего, вспомним, как определялись функциональные блоки в стандарте IEC61131-3 (рис. 5). В IEC61131-3 функциональный блок имел входные и выходные переменные. Входные переменные отображались слева от ФБ, выходные – справа. Были определены стандартные (элементарные) функциональные блоки для различных типов данных. Алгоритм для стандартных функциональных блоков был жестко фиксирован, и сами стандартные ФБ составляли библиотеку стандартных функциональных блоков ISaGRAF. Пользователь мог создать свой собственный функциональный блок, определив его входные и выходные переменные, а также написав алгоритм преобразования входных переменных выходные на определенном языке IEC61131-3 (например, языке структурного текста ST). В Приложении D стандарта IEC61499 описано преобразование функциональных блоков IRC61131-3 в IEC61499. Такой пример преобразования приведен на рис. 5.

ISaGRAF 5 – основа для создания распределенных приложений на базе стандарта IEC61499 (часть 1), image010

Рисунок 5 Пример функционального блока в IEC61131-3 (слева) и его преобразования в ФБ IEC61499 (справа)


Мой блог находят по следующим фразам

Раздел: SCADA системы, ПЛК-системы Метки: , , ,

Оставить комментарий

Отправить сообщение

CoDeSys GSM/GPRS модем Lectus OPC MasterSCADA Modbus MX110 Omron OPC-сервер owen owen logic PLC Configuration PROFIBUS s-200 SCADA scada системы siemens siemens plc SIMATIC Simplight SMS step7 TRACE MODE Динамизация ИП-320 МЭК 1131–3 ОВЕН ОВЕН ПЛК ОВЕН ПЧВ ПЛК ПЛК ОВЕН ПР 110 Панель оператора Программируемое реле Частотный преобразователь библиотека в CoDeSys визуализация диспетчеризация конфигурация панели программирование ПЛК серия NS сименс плк частотник частотное управление язык CFC язык ST
.